Notes 15: Sec. 4-1 Graph Quadratic Equations in Standard Form and Sec. 4-2 Graph Quadratic Functions in Vertex or Intercept Form

A Quadratic function can be written in the standard form _______________.
Its graph is U shaped and is called a _______________.
Label the key parts of the graph:

- Quadratic functions open UP when _________________ & open DOWN when _______________.

Example 1
Graph a function of the form \(y = ax^2 + c \)
Graph \(y = -2x^2 + 2 \). Compare the graph with the graph of \(y = x^2 \).

\[
\begin{array}{c|c|c}
\text{x} & \text{y} & \text{if} \ b=0 \ let \ x=-2, -1, 1, 2 \\
-2 & -6 & y=-2x^2+2 \\
-1 & 0 & y=-2(\)^2+2 \\
0 & 2 & \\
1 & 0 & \\
2 & -6 & \\
\end{array}
\]

\(y = -2x^2 + 2 \) is opening down is narrower than \(y = x^2 \)
\(|a| \); \(|a| > 1 \) always narrower \(|a| < 1 \) wider
Example 2:
For the following functions (a) tell whether the graph opens up or opens down, (b) find the vertex, (c) find the axis of symmetry, and (d) graph it

\(y = -2x^2 - 1 \)

\(y = 3x^2 - 2 \)

Properties of the Graph of \(y = ax^2 + bx + c \)

Characteristics of the graph of \(y = ax^2 + bx + c \):

- The graph opens up if \(a > 0 \) and opens down if \(a < 0 \). \(\text{Negative} \ "x^2" \)
- The graph is narrower than the graph of \(y = x^2 \) if \(|a| > 1 \) and wider if \(|a| < 1 \).
- The axis of symmetry is \(x = \frac{-b}{2a} \) and the vertex has \(x \)-coordinate \(\frac{-b}{2a} \).
- The \(y \)-intercept is \(c \). So, the point \((0, c)\) is on the parabola.
Example 3
Graph a function of the form $y = ax^2 + bx + c$
Graph $y = -x^2 + 4x - 3$.

<table>
<thead>
<tr>
<th>x</th>
<th>$-x^2 + 4x - 3$</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 + 0 - 3</td>
<td>-3</td>
</tr>
<tr>
<td>1</td>
<td>-1 + 4 - 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-4 + 8 - 3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>-9 + 12 - 3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-16 + 16 - 3</td>
<td>-3</td>
</tr>
</tbody>
</table>

\[\chi = \frac{-b}{2a} = \frac{-4}{-2(-1)} = 2 \]

\[\chi = 2 \]

- opens down
- same width as x^2
- line of symmetry
- \[\text{Vertex (2, 1)} \]

MINIMUM AND MAXIMUM VALUES

For $y = ax^2 + bx + c$, the vertex's y-coordinate is the **minimum value** of the function if $a \leq 0$ and the **maximum value** if $a \geq 0$.

Example 4: Tell whether the function $y = -3x^2 + 12x - 6$ has a minimum value or a maximum value. Then find the minimum or maximum value.

\[a = -3 \quad \text{down} \]

Maximum @ $(2, 6)$

\[\chi = \frac{-b}{2a} = \frac{-(12)}{2(-3)} = \frac{-12}{-6} = 2 \]

\[y = -3(2)^2 + 12(2) - 6 \]

\[y = -12 + 24 - 6 = 6 \]
Another useful form of the quadratic function is the vertex form: \[y = a(x-h)^2 + k. \]

GRAPH OF VERTEX FORM \(y = a(x-h)^2 + k \)

The graph of \(y = a(x-h)^2 + k \) is the parabola \(y = ax^2 \) translated \(h \) units and \(k \) units.
- The vertex is \((h, k)\).
- The axis of symmetry is \(x = \frac{h}{2} \).
- The graph opens up if \(a > 0 \) and down if \(a < 0 \).

Example 5
Graph a quadratic function in vertex form

Graph \(y = (x+1)^2 - 2 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>((x+1)^2 - 2)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>((-2)^2 - 2)</td>
<td>2</td>
</tr>
<tr>
<td>-2</td>
<td>((-1)^2 - 2)</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>((0)^2 - 2)</td>
<td>-2</td>
</tr>
<tr>
<td>0</td>
<td>((1)^2 - 2)</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>((2)^2 - 2)</td>
<td>2</td>
</tr>
</tbody>
</table>

Example 6: Write a quadratic function in vertex form for the function whose graph has its vertex at \((-5, 4)\) and passes through the point \((7, 1)\).
GRAPH OF INTERCEPT FORM \(y = a(x - p)(x - q) \):

Characteristics of the graph \(y = a(x - p)(x - q) \):
- The \(x \)-intercepts are \(p \) and \(q \).
- The axis of symmetry is halfway between \((p, 0)\) and \((q, 0)\) and it has equation \(x = \frac{p + q}{2} \).
- The graph opens up if \(a \geq 0 \) and opens down if \(a \leq 0 \).

Example 7:
Graph \(y = -2(x - 1)(x - 5) \).

\(\chi = 1 \quad (1, 0) \)
\(\chi = 5 \quad (5, 0) \)

\(\chi \)-value of vertex

\[\chi = \frac{1 + 5}{2} = \frac{6}{2} = 3 \]

\(y = -2(3-1)(3-5) \)
\(y = -2(2)(-2) = 8 \)

To change from intercept form to Standard form: **Ex:** \(y = -2(x + 5)(x - 8) \)

1. Use foil to multiply binomials together: \(y = -2(x^2 - 3x - 40) \)
2. Distribute coefficient to quadratic: \(y = -2x^2 + 6x + 80 \)
To change from vertex form to standard form:

Ex: \(f(x) = 4(x-1)^2 + 9 \)

1. Foil binomial:
 \[
f(x) = 4(x-1)(x-1) + 9 \rightarrow 4(x^2 - 2x - x + 1) + 9 \]
 \[
f(x) = 4(x^2 - 3x + 1) + 9 \]

2. Distribute coefficient to quadratic:
 \[
f(x) = 4x^2 - 12x + 4 + 9 \]
 \[
f(x) = 4x^2 - 12x + 13 \]

3. Combine like terms:
 \[
f(x) = 4x^2 - 12x + 13 \]

HW #15: pg. 240 #3-39 by 3’s and pg. 249 #4-40 by 4’s
Please use graph paper on this assignment